
zounds Documentation
Release 0.46.0

John Vinyard

Mar 05, 2020

Contents

1 API documentation 3
1.1 Timeseries . 3
1.2 Soundfile . 9
1.3 Spectral . 13
1.4 Core . 22
1.5 Synthesize . 23
1.6 Datasets . 31
1.7 Learn . 32

2 Indices and tables 39

Python Module Index 41

Index 43

i

ii

zounds Documentation, Release 0.46.0

Zounds is a python library for organizing machine learning experiments dealing with sound.

Contents 1

zounds Documentation, Release 0.46.0

2 Contents

CHAPTER 1

API documentation

1.1 Timeseries

The timeseries module introduces classes for dealing with time as it relates to audio signals

1.1.1 Audio Samples

class zounds.timeseries.AudioSamples
AudioSamples represents constant-rate samples of a continuous audio signal at common sampling rates.

It is a special case of an ArrayWithUnits whose first dimension is a TimeDimension that has a common
audio sampling rate (e.g. SR44100).

Parameters

• array (np.ndarray) – The raw sample data

• samplerate (SampleRate) – The rate at which data was sampled

Raises

• ValueError – When array has a second dimension with size greater than 2

• TypeError – When samplerate is not a AudioSampleRate (e.g. SR22050)

Examples::

>>> from zounds import AudioSamples, SR44100, TimeSlice, Seconds
>>> import numpy as np
>>> raw = np.random.normal(0, 1, 44100*10)
>>> samples = AudioSamples(raw, SR44100())
>>> samples.samples_per_second
44100
>>> samples.channels
1

(continues on next page)

3

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#TypeError

zounds Documentation, Release 0.46.0

(continued from previous page)

>>> sliced = samples[TimeSlice(Seconds(2))]
>>> sliced.shape
(88200,)

classmethod from_example(arr, example)
Produce a new ArrayWithUnits instance given some raw data and an example instance that has the
desired dimensions

mono
Return this instance summed to mono. If the instance is already mono, this is a no-op.

encode(flo=None, fmt=’WAV’, subtype=’PCM_16’)
Return audio samples encoded as bytes given a particular audio format

Parameters

• flo (file-like) – A file-like object to write the bytes to. If flo is not supplied, a new
io.BytesIO instance will be created and returned

• fmt (str) – A libsndfile-friendly identifier for an audio encoding (detailed here: http:
//www.mega-nerd.com/libsndfile/api.html)

• subtype (str) – A libsndfile-friendly identifier for an audio encoding subtype (detailed
here: http://www.mega-nerd.com/libsndfile/api.html)

Examples

>>> from zounds import SR11025, AudioSamples
>>> import numpy as np
>>> silence = np.zeros(11025*10)
>>> samples = AudioSamples(silence, SR11025())
>>> bio = samples.encode()
>>> bio.read(10)
'RIFFx]\x03\x00WA'

1.1.2 The Time Dimension

class zounds.timeseries.TimeDimension(frequency=None, duration=None, size=None)
When applied to an axis of ArrayWithUnits, that axis can be viewed as representing a constant-rate time
series sampled at a given SampleRate.

Parameters

• frequency (np.timedelta64) – The sampling frequency for this dimension

• duration (np.timedelta64) – The sampling duration for this dimension. When not
provided it defaults to the sampling frequency

• size (int) – The size/length of the dimension

Raises ValueError – when frequency and/or duration are not np.timedelta64 instances

4 Chapter 1. API documentation

https://docs.python.org/3/library/io.html#io.BytesIO
https://docs.python.org/3/library/stdtypes.html#str
http://www.mega-nerd.com/libsndfile/api.html
http://www.mega-nerd.com/libsndfile/api.html
https://docs.python.org/3/library/stdtypes.html#str
http://www.mega-nerd.com/libsndfile/api.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/exceptions.html#ValueError

zounds Documentation, Release 0.46.0

Examples

>>> from zounds import ArrayWithUnits, TimeDimension, Seconds, TimeSlice
>>> import numpy as np
>>> raw = np.zeros(100)
>>> timeseries = ArrayWithUnits(raw, [TimeDimension(Seconds(1))])
>>> timeseries.dimensions[0]
TimeDimension(f=1.0, d=1.0)
>>> timeseries.dimensions[0].end_seconds
100.0
>>> sliced = timeseries[TimeSlice(Seconds(50))]
>>> sliced.shape
(50,)

metaslice(index, size)
Produce a new instance of this dimension, given a custom slice

integer_based_slice(ts)
Transform a TimeSlice into integer indices that numpy can work with

Parameters ts (slice, TimeSlice) – the time slice to translate into integer indices

class zounds.timeseries.TimeSlice(duration=None, start=None)
A slice that can be applied to a TimeDimension to return a subset of samples.

Parameters

• duration (np.timedelta64) – The duration of the slice

• start (np.timedelta64) – A duration representing the start position of this slice, rel-
ative to zero or the beginning. If not provided, defaults to zero

Raises ValueError – when duration and/or start are not numpy.timedelta64 instances

Examples

>>> from zounds import ArrayWithUnits, TimeDimension, TimeSlice, Seconds
>>> import numpy as np
>>> raw = np.zeros(100)
>>> ts = ArrayWithUnits(raw, [TimeDimension(Seconds(1))])
>>> sliced = ts[TimeSlice(duration=Seconds(5), start=Seconds(50))]
>>> sliced.shape
(5,)

See also:

TimeDimension

1.1.3 Sample Rates

class zounds.timeseries.SR96000
A SampleRate representing the common audio sampling rate 96kHz

1.1. Timeseries 5

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/exceptions.html#ValueError

zounds Documentation, Release 0.46.0

Examples

>>> from zounds import SR96000
>>> sr = SR96000()
>>> sr.samples_per_second
96000
>>> int(sr)
96000
>>> sr.nyquist
48000

class zounds.timeseries.SR48000
A SampleRate representing the common audio sampling rate 48kHz

Examples

>>> from zounds import SR48000
>>> sr = SR48000()
>>> sr.samples_per_second
48000
>>> int(sr)
48000
>>> sr.nyquist
24000

class zounds.timeseries.SR44100
A SampleRate representing the common audio sampling rate 44.1kHz

Examples

>>> from zounds import SR44100
>>> sr = SR44100()
>>> sr.samples_per_second
44100
>>> int(sr)
44100
>>> sr.nyquist
22050

class zounds.timeseries.SR22050
A SampleRate representing the common audio sampling rate 22.025kHz

Examples

>>> from zounds import SR22050
>>> sr = SR22050()
>>> sr.samples_per_second
22050
>>> int(sr)
22050
>>> sr.nyquist
11025

6 Chapter 1. API documentation

zounds Documentation, Release 0.46.0

class zounds.timeseries.SR11025
A SampleRate representing the common audio sampling rate 11.025kHz

Examples

>>> from zounds import SR11025
>>> sr = SR11025()
>>> sr.samples_per_second
11025
>>> int(sr)
11025
>>> sr.nyquist
5512

class zounds.timeseries.SampleRate(frequency, duration)
SampleRate describes the constant frequency at which samples are taken from a continuous signal, and the
duration of each sample.

Instances of this class could describe an audio sampling rate (e.g. 44.1kHz) or the strided windows often used
in short-time fourier transforms

Parameters

• frequency (numpy.timedelta64) – The frequency at which the signal is sampled

• duration (numpy.timedelta64) – The duration of each sample

Raises ValueError – when frequency or duration are less than or equal to zero

Examples

>>> from zounds import Seconds, SampleRate
>>> sr = SampleRate(Seconds(1), Seconds(2))
>>> sr.frequency
numpy.timedelta64(1,'s')
>>> sr.duration
numpy.timedelta64(2,'s')
>>> sr.overlap
numpy.timedelta64(1,'s')
>>> sr.overlap_ratio
0.5

See also:

SR96000 SR48000 SR44100 SR22050 SR11025

overlap
For sampling schemes that overlap, return a numpy.timedelta64 instance representing the duration
of overlap between each sample

overlap_ratio
For sampling schemes that overlap, return the ratio of overlap to sample duration

1.1.4 Durations

Zounds includes several convenience classes that make it possible to create time durations as numpy.timedelta64
instances without remembering or using magic strings to designate units.

1.1. Timeseries 7

https://docs.python.org/3/library/exceptions.html#ValueError

zounds Documentation, Release 0.46.0

class zounds.timeseries.Hours(*args, **kwargs)
Convenience class for creating a duration in hours

Parameters hours (int) – duration in hours

Examples

>>> from zounds import Hours
>>> hours = Hours(3)
>>> hours
numpy.timedelta(3, 'h')

class zounds.timeseries.Minutes(*args, **kwargs)
Convenience class for creating a duration in minutes

Parameters minutes (int) – duration in minutes

Examples

>>> from zounds import Minutes
>>> minutes = Minutes(3)
>>> minutes
numpy.timedelta(3, 'm')

class zounds.timeseries.Seconds(*args, **kwargs)
Convenience class for creating a duration in seconds

Parameters seconds (int) – duration in seconds

Examples

>>> from zounds import Seconds
>>> seconds = Seconds(3)
>>> seconds
numpy.timedelta(3, 's')

class zounds.timeseries.Milliseconds(*args, **kwargs)
Convenience class for creating a duration in milliseconds

Parameters milliseconds (int) – duration in milliseconds

Examples

>>> from zounds import Milliseconds
>>> ms = Milliseconds(3)
>>> ms
numpy.timedelta(3, 'ms')

class zounds.timeseries.Microseconds(*args, **kwargs)
Convenience class for creating a duration in microseconds

Parameters microseconds (int) – duration in microseconds

8 Chapter 1. API documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

zounds Documentation, Release 0.46.0

Examples

>>> from zounds import Microseconds
>>> us = Microseconds(3)
>>> us
numpy.timedelta(3, 'us')

class zounds.timeseries.Nanoseconds(*args, **kwargs)
Convenience class for creating a duration in nanoseconds

Parameters nanoseconds (int) – duration in nanoseconds

Examples

>>> from zounds import Nanoseconds
>>> ns = Nanoseconds(3)
>>> ns
numpy.timedelta(3, 'ns')

class zounds.timeseries.Picoseconds(*args, **kwargs)
Convenience class for creating a duration in picoseconds

Parameters picoseconds (int) – duration in picoseconds

Examples

>>> from zounds import Picoseconds
>>> ps = Picoseconds(3)
>>> ps
numpy.timedelta(3, 'ps')

1.2 Soundfile

The soundfile module introduces featureflow.Node subclasses that know how to process low-level audio samples
and common audio encodings.

1.2.1 Input

class zounds.soundfile.AudioMetaData(uri=None, samplerate=None, channels=None, licens-
ing=None, description=None, tags=None, **kwargs)

Encapsulates metadata about a source audio file, including things like text descriptions and licensing informa-
tion.

Parameters

• uri (requests.Request or str) – uri may be either a string representing a network
resource or a local file, or a requests.Request instance

• samplerate (int) – the samplerate of the source audio

• channels (int) – the number of channels of the source audio

• licensing (str) – The licensing agreement (if any) that applies to the source audio

1.2. Soundfile 9

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

zounds Documentation, Release 0.46.0

• description (str) – a text description of the source audio

• tags (str) – text tags that apply to the source audio

• kwargs (dict) – other arbitrary properties about the source audio

Raises ValueError – when uri is not provided

See also:

zounds.datasets.FreeSoundSearch zounds.datasets.InternetArchive zounds.
datasets.PhatDrumLoops

1.2.2 Chunksize

class zounds.soundfile.ChunkSizeBytes(samplerate, duration, channels=2, bit_depth=16)
A convenience class to help describe a chunksize in bytes for the featureflow.ByteStream in terms of
audio sample batch sizes.

Parameters

• samplerate (SampleRate) – The samples-per-second factor

• duration (numpy.timedelta64) – The length of desired chunks in seconds

• channels (int) – Then audio channels factor

• bit_depth (int) – The bit depth factor

Examples

>>> from zounds import ChunkSizeBytes, Seconds, SR44100
>>> chunksize = ChunkSizeBytes(SR44100(), Seconds(30))
>>> chunksize
ChunkSizeBytes(samplerate=SR44100(f=2.2675736e-05, d=2.2675736e-05)...
>>> int(chunksize)
5292000

1.2.3 Processing Nodes

class zounds.soundfile.AudioStream(sum_to_mono=True, needs=None)
AudioStream expects to process a raw stream of bytes (e.g. one produced by featureflow.ByteStream)
and produces chunks of AudioSamples

Parameters

• sum_to_mono (bool) – True if this node should return a AudioSamples instance with
a single channel

• needs (Feature) – a processing node that produces a byte stream (e.g. ByteStream

Here’s how’d you typically see AudioStream used in a processing graph.

import featureflow as ff
import zounds

chunksize = zounds.ChunkSizeBytes(
samplerate=zounds.SR44100(),

(continues on next page)

10 Chapter 1. API documentation

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

zounds Documentation, Release 0.46.0

(continued from previous page)

duration=zounds.Seconds(30),
bit_depth=16,
channels=2)

@zounds.simple_in_memory_settings
class Document(ff.BaseModel):

meta = ff.JSONFeature(
zounds.MetaData,
store=True,
encoder=zounds.AudioMetaDataEncoder)

raw = ff.ByteStreamFeature(
ff.ByteStream,
chunksize=chunksize,
needs=meta,
store=False)

pcm = zounds.AudioSamplesFeature(
zounds.AudioStream,
needs=raw,
store=True)

synth = zounds.NoiseSynthesizer(zounds.SR11025())
samples = synth.synthesize(zounds.Seconds(10))
raw_bytes = samples.encode()
_id = Document.process(meta=raw_bytes)
doc = Document(_id)
print doc.pcm.__class__ # returns an AudioSamples instance

class zounds.soundfile.Resampler(samplerate=None, needs=None)
Resampler expects to process AudioSamples instances (e.g., those produced by a AudioStream node),
and will produce a new stream of AudioSamples at a new sampling rate.

Parameters

• samplerate (AudioSampleRate) – the desired sampling rate. If none is provided, the
default is SR44100

• needs (Feature) – a processing node that produces AudioSamples

Here’s how you’d typically see Resampler used in a processing graph.

import featureflow as ff
import zounds

chunksize = zounds.ChunkSizeBytes(
samplerate=zounds.SR44100(),
duration=zounds.Seconds(30),
bit_depth=16,
channels=2)

@zounds.simple_in_memory_settings
class Document(ff.BaseModel):

meta = ff.JSONFeature(
zounds.MetaData,
store=True,
encoder=zounds.AudioMetaDataEncoder)

(continues on next page)

1.2. Soundfile 11

zounds Documentation, Release 0.46.0

(continued from previous page)

raw = ff.ByteStreamFeature(
ff.ByteStream,
chunksize=chunksize,
needs=meta,
store=False)

pcm = zounds.AudioSamplesFeature(
zounds.AudioStream,
needs=raw,
store=True)

resampled = zounds.AudioSamplesFeature(
zounds.Resampler,
samplerate=zounds.SR22050(),
needs=pcm,
store=True)

synth = zounds.NoiseSynthesizer(zounds.SR11025())
samples = synth.synthesize(zounds.Seconds(10))
raw_bytes = samples.encode()
_id = Document.process(meta=raw_bytes)
doc = Document(_id)
print doc.pcm.samplerate.__class__.__name__ # SR11025
print doc.resampled.samplerate.__class__.__name__ # SR22050

class zounds.soundfile.OggVorbis(needs=None)
OggVorbis expects to process a stream of raw bytes (e.g. one produced by featureflow.ByteStream)
and produces a new byte stream where the original audio samples are ogg-vorbis encoded

Parameters needs (Feature) – a feature that produces a byte stream (e.g. featureflow.
Bytestream)

Here’s how you’d typically see OggVorbis used in a processing graph.

import featureflow as ff
import zounds

chunksize = zounds.ChunkSizeBytes(
samplerate=zounds.SR44100(),
duration=zounds.Seconds(30),
bit_depth=16,
channels=2)

@zounds.simple_in_memory_settings
class Document(ff.BaseModel):

meta = ff.JSONFeature(
zounds.MetaData,
store=True,
encoder=zounds.AudioMetaDataEncoder)

raw = ff.ByteStreamFeature(
ff.ByteStream,
chunksize=chunksize,
needs=meta,

(continues on next page)

12 Chapter 1. API documentation

https://xiph.org/vorbis/

zounds Documentation, Release 0.46.0

(continued from previous page)

store=False)

ogg = zounds.OggVorbisFeature(
zounds.OggVorbis,
needs=raw,
store=True)

synth = zounds.NoiseSynthesizer(zounds.SR11025())
samples = synth.synthesize(zounds.Seconds(10))
raw_bytes = samples.encode()
_id = Document.process(meta=raw_bytes)
doc = Document(_id)
fetch and decode a section of audio
ts = zounds.TimeSlice(zounds.Seconds(2))
print doc.ogg[ts].shape # 22050

1.3 Spectral

The spectral module contains classes that aid in dealing with frequency-domain representations of sound

1.3.1 Representations

class zounds.spectral.FrequencyDimension(scale)
When applied to an axis of ArrayWithUnits, that axis can be viewed as representing the energy present in
a series of frequency bands

Parameters scale (FrequencyScale) – A scale whose frequency bands correspond to the
items along the frequency axis

Examples

>>> from zounds import LinearScale, FrequencyBand, ArrayWithUnits
>>> from zounds import FrequencyDimension
>>> import numpy as np
>>> band = FrequencyBand(20, 20000)
>>> scale = LinearScale(frequency_band=band, n_bands=100)
>>> raw = np.hanning(100)
>>> arr = ArrayWithUnits(raw, [FrequencyDimension(scale)])
>>> sliced = arr[FrequencyBand(100, 1000)]
>>> sliced.shape
(5,)
>>> sliced.dimensions
(FrequencyDimension(scale=LinearScale(band=FrequencyBand(
start_hz=20.0,
stop_hz=1019.0,
center=519.5,
bandwidth=999.0), n_bands=5)),)

metaslice(index, size)
Produce a new instance of this dimension, given a custom slice

1.3. Spectral 13

zounds Documentation, Release 0.46.0

integer_based_slice(index)
Subclasses define behavior that transforms a custom, user-defined slice into integer indices that numpy can
understand

Parameters index (custom slice) – A user-defined slice instance

validate(size)
Ensure that the size of the dimension matches the number of bands in the scale

Raises ValueError – when the dimension size and number of bands don’t match

class zounds.spectral.ExplicitFrequencyDimension(scale, slices)
A frequency dimension where the mapping from frequency bands to integer indices is provided explicitly, rather
than computed

Parameters

• scale (ExplicitScale) – the explicit frequency scale that defines how slices are ex-
tracted from this dimension

• slices (iterable of slices) – An iterable of python.slice instances which
correspond to each frequency band from scale

Raises ValueError – when the number of slices and number of bands in scale don’t match

metaslice(index, size)
Produce a new instance of this dimension, given a custom slice

integer_based_slice(index)
Subclasses define behavior that transforms a custom, user-defined slice into integer indices that numpy can
understand

Parameters index (custom slice) – A user-defined slice instance

validate(size)
Subclasses check to ensure that the dimensions size does not validate any assumptions made by this in-
stance

class zounds.spectral.FrequencyAdaptive
TODO: This needs some love. Mutually exclusive constructor arguments are no bueno

Parameters

• arrs – TODO

• time_dimension (TimeDimension) – the time dimension of the first axis of this array

• scale (FrequencyScale) – The frequency scale corresponding to the first axis of this
array, mutually exclusive with the explicit_freq_dimension argument

• explicit_freq_dimension (ExplicitFrequencyDimension) – TODO

See also:

FrequencyAdaptiveTransform

square(n_coeffs, do_overlap_add=False)
Compute a “square” view of the frequency adaptive transform, by resampling each frequency band such
that they all contain the same number of samples, and performing an overlap-add procedure in the case
where the sample frequency and duration differ :param n_coeffs: The common size to which each fre-
quency band should be resampled

14 Chapter 1. API documentation

https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError

zounds Documentation, Release 0.46.0

1.3.2 Functions

zounds.spectral.fft(x, axis=-1, padding_samples=0)
Apply an FFT along the given dimension, and with the specified amount of zero-padding

Parameters

• x (ArrayWithUnits) – an ArrayWithUnits instance which has one or more
TimeDimension axes

• axis (int) – The axis along which the fft should be applied

• padding_samples (int) – The number of padding zeros to apply along axis before
performing the FFT

zounds.spectral.morlet_filter_bank(samplerate, kernel_size, scale, scaling_factor, normal-
ize=True)

Create a ArrayWithUnits instance with a TimeDimension and a FrequencyDimension representing
a bank of morlet wavelets centered on the sub-bands of the scale.

Parameters

• samplerate (SampleRate) – the samplerate of the input signal

• kernel_size (int) – the length in samples of each filter

• scale (FrequencyScale) – a scale whose center frequencies determine the fundamen-
tal frequency of each filer

• scaling_factor (int or list of int) – Scaling factors for each band, which
determine the time-frequency resolution tradeoff. The number(s) should fall between 0 and
1, with smaller numbers achieving better frequency resolution, and larget numbers better
time resolution

• normalize (bool) – When true, ensure that each filter in the bank has unit norm

See also:

FrequencyScale SampleRate

1.3.3 Processing Nodes

class zounds.spectral.SlidingWindow(wscheme, wfunc=None, padwith=0, needs=None)
SlidingWindow is a processing node that provides a very common precursor to many frequency domain trans-
forms: a lapped and windowed view of the time- domain signal.

Parameters

• wscheme (SampleRate) – a sample rate that describes the frequency and duration af the
sliding window

• wfunc (WindowingFunc) – a windowing function to apply to each frame

• needs (Node) – A processing node on which this node relies for its data. This will gener-
ally be a time-domain signal

Here’s how you’d typically see SlidingWindow used in a processing graph

import zounds

Resampled = zounds.resampled(resample_to=zounds.SR11025())

(continues on next page)

1.3. Spectral 15

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

zounds Documentation, Release 0.46.0

(continued from previous page)

@zounds.simple_in_memory_settings
class Sound(Resampled):

windowed = zounds.ArrayWithUnitsFeature(
zounds.SlidingWindow,
needs=Resampled.resampled,
wscheme=zounds.SampleRate(

frequency=zounds.Milliseconds(250),
duration=zounds.Milliseconds(500)),

wfunc=zounds.OggVorbisWindowingFunc(),
store=True)

synth = zounds.SineSynthesizer(zounds.SR44100())
samples = synth.synthesize(zounds.Seconds(5), [220., 440., 880.])

process the audio, and fetch features from our in-memory store
_id = Sound.process(meta=samples.encode())
sound = Sound(_id)

print sound.windowed.dimensions[0]
TimeDimension(f=0.250068024879, d=0.500045346811)
print sound.windowed.dimensions[1]
TimeDimension(f=9.0702947e-05, d=9.0702947e-05)

See also:

WindowingFunc SampleRate

class zounds.spectral.FrequencyWeighting(weighting=None, needs=None)
FrequencyWeighting is a processing node that expects to be passed an ArrayWithUnits instance whose last
dimension is a FrequencyDimension

Parameters

• weighting (FrequencyWeighting) – the frequency weighting to apply

• needs (Node) – a processing node on which this node depends whose last dimension is a
FrequencyDimension

class zounds.spectral.FFT(needs=None, axis=-1, padding_samples=0)
A processing node that performs an FFT of a real-valued signal

Parameters

• axis (int) – The axis over which the FFT should be computed

• padding_samples (int) – number of zero samples to pad each window with before
applying the FFT

• needs (Node) – a processing node on which this one depends

See also:

FFTSynthesizer

class zounds.spectral.DCT(axis=-1, scale_always_even=False, needs=None)
A processing node that performs a Type II Discrete Cosine Transform (https://en.wikipedia.org/wiki/Discrete_
cosine_transform#DCT-II) of the input

Parameters

• axis (int) – The axis over which to perform the DCT transform

16 Chapter 1. API documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-II
https://docs.python.org/3/library/functions.html#int

zounds Documentation, Release 0.46.0

• needs (Node) – a processing node on which this one depends

See also:

DctSynthesizer

class zounds.spectral.DCTIV(scale_always_even=False, needs=None)
A processing node that performs a Type IV Discrete Cosine Transform (https://en.wikipedia.org/wiki/Discrete_
cosine_transform#DCT-IV) of the input

Parameters needs (Node) – a processing node on which this one depends

See also:

DCTIVSynthesizer

class zounds.spectral.MDCT(needs=None)
A processing node that performs a modified discrete cosine transform (https://en.wikipedia.org/wiki/Modified_
discrete_cosine_transform) of the input.

This is really just a lapped version of the DCT-IV transform

Parameters needs (Node) – a processing node on which this one depends

See also:

MDCTSynthesizer

class zounds.spectral.FrequencyAdaptiveTransform(transform=None, scale=None,
window_func=None,
check_scale_overlap_ratio=False,
needs=None)

A processing node that expects to receive the input from a frequency domain transformation (e.g. FFT), and
produces a FrequencyAdaptive instance where time resolution can vary by frequency. This is similar to,
but not precisely the same as ideas introduced in:

• A quasi-orthogonal, invertible, and perceptually relevant time-frequency transform for audio coding

• A FRAMEWORK FOR INVERTIBLE, REAL-TIME CONSTANT-Q TRANSFORMS

Parameters

• transform (function) – the transform to be applied to each frequency band

• scale (FrequencyScale) – the scale used to take frequency band slices

• window_func (numpy.ndarray) – the windowing function to apply each band before
the transform is applied

• check_scale_overlap_ratio (bool) – If this feature is to be used for resynthesis
later, ensure that each frequency band overlaps with the previous one by at least half, to
ensure artifact-free synthesis

See also:

FrequencyAdaptive FrequencyAdaptiveDCTSynthesizer FrequencyAdaptiveFFTSynthesizer

class zounds.spectral.Chroma(frequency_band, window=<zounds.spectral.sliding_window.HanningWindowingFunc
object>, needs=None)

class zounds.spectral.BarkBands(frequency_band, n_bands=100, win-
dow=<zounds.spectral.sliding_window.HanningWindowingFunc
object>, needs=None)

1.3. Spectral 17

https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-IV
https://en.wikipedia.org/wiki/Discrete_cosine_transform#DCT-IV
https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
https://en.wikipedia.org/wiki/Modified_discrete_cosine_transform
https://hal-amu.archives-ouvertes.fr/hal-01194806/document
http://www.univie.ac.at/nonstatgab/pdf_files/dogrhove12_amsart.pdf
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/functions.html#bool

zounds Documentation, Release 0.46.0

class zounds.spectral.SpectralCentroid(needs=None)
Indicates where the “center of mass” of the spectrum is. Perceptually, it has a robust connection with the
impression of “brightness” of a sound. It is calculated as the weighted mean of the frequencies present in the
signal, determined using a Fourier transform, with their magnitudes as the weights. . .

– http://en.wikipedia.org/wiki/Spectral_centroid

class zounds.spectral.SpectralFlatness(needs=None)
Spectral flatness or tonality coefficient, also known as Wiener entropy, is a measure used in digital signal pro-
cessing to characterize an audio spectrum. Spectral flatness is typically measured in decibels, and provides a
way to quantify how tone-like a sound is, as opposed to being noise-like. The meaning of tonal in this context
is in the sense of the amount of peaks or resonant structure in a power spectrum, as opposed to flat spectrum of
a white noise. A high spectral flatness indicates that the spectrum has a similar amount of power in all spectral
bands - this would sound similar to white noise, and the graph of the spectrum would appear relatively flat and
smooth. A low spectral flatness indicates that the spectral power is concentrated in a relatively small number of
bands - this would typically sound like a mixture of sine waves, and the spectrum would appear “spiky”. . .

– http://en.wikipedia.org/wiki/Spectral_flatness

class zounds.spectral.BFCC(needs=None, n_coeffs=13, exclude=1)
Bark frequency cepstral coefficients

1.3.4 Windowing Functions

class zounds.spectral.WindowingFunc(windowing_func=None)
WindowingFunc is mostly a convenient wrapper around numpy’s handy windowing functions, or any function
that takes a size parameter and returns a numpy array-like object.

A WindowingFunc instance can be multiplied with a nother array of any size.

Parameters windowing_func (function) – A function that takes a size parameter, and returns
a numpy array-like object

Examples

>>> from zounds import WindowingFunc
>>> import numpy as np
>>> wf = WindowingFunc(lambda size: np.hanning(size))
>>> np.ones(5) * wf
array([0. , 0.5, 1. , 0.5, 0.])
>>> np.ones(10) * wf
array([0. , 0.11697778, 0.41317591, 0.75 , 0.96984631,

0.96984631, 0.75 , 0.41317591, 0.11697778, 0.])

See also:

IdentityWindowingFunc OggVorbisWindowingFunc HanningWindowingFunc

class zounds.spectral.IdentityWindowingFunc
An identity windowing function

class zounds.spectral.OggVorbisWindowingFunc
The windowing function described in the ogg vorbis specification

class zounds.spectral.HanningWindowingFunc
A hanning window function

18 Chapter 1. API documentation

http://en.wikipedia.org/wiki/Spectral_centroid
http://en.wikipedia.org/wiki/Spectral_flatness
https://docs.scipy.org/doc/numpy/reference/routines.window.html
https://xiph.org/vorbis/doc/Vorbis_I_spec.html#x1-230001.3.2

zounds Documentation, Release 0.46.0

1.3.5 Scales

class zounds.spectral.LinearScale(frequency_band, n_bands, always_even=False)
A linear frequency scale with constant bandwidth. Appropriate for use with transforms whose coefficients also
lie on a linear frequency scale, e.g. the FFT or DCT transforms.

Parameters

• frequency_band (FrequencyBand) – A band representing the entire span of this
scale. E.g., one might want to generate a scale spanning the entire range of human hearing
by starting with FrequencyBand(20, 20000)

• n_bands (int) – The number of bands in this scale

• always_even (bool) – when converting frequency slices to integer indices that numpy
can understand, should the slice size always be even?

Examples

>>> from zounds import FrequencyBand, LinearScale
>>> scale = LinearScale(FrequencyBand(20, 20000), 10)
>>> scale
LinearScale(band=FrequencyBand(
start_hz=20,
stop_hz=20000,
center=10010.0,
bandwidth=19980), n_bands=10)
>>> scale.Q
array([0.51001001, 1.51001001, 2.51001001, 3.51001001, 4.51001001,

5.51001001, 6.51001001, 7.51001001, 8.51001001, 9.51001001])

static from_sample_rate(sample_rate, n_bands, always_even=False)
Return a LinearScale instance whose upper frequency bound is informed by the nyquist frequency of
the sample rate.

Parameters

• sample_rate (SamplingRate) – the sample rate whose nyquist frequency will serve
as the upper frequency bound of this scale

• n_bands (int) – the number of evenly-spaced frequency bands

class zounds.spectral.GeometricScale(start_center_hz, stop_center_hz, bandwidth_ratio,
n_bands, always_even=False)

A constant-Q scale whose center frequencies progress geometrically rather than linearly

Parameters

• start_center_hz (int) – the center frequency of the first band in the scale

• stop_center_hz (int) – the center frequency of the last band in the scale

• bandwidth_ratio (float) – the center frequency to bandwidth ratio

• n_bands (int) – the total number of bands

1.3. Spectral 19

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#int

zounds Documentation, Release 0.46.0

Examples

>>> from zounds import GeometricScale
>>> scale = GeometricScale(20, 20000, 0.05, 10)
>>> scale
GeometricScale(band=FrequencyBand(
start_hz=19.5,
stop_hz=20500.0,
center=10259.75,
bandwidth=20480.5), n_bands=10)
>>> scale.Q
array([20., 20., 20., 20., 20., 20., 20., 20., 20., 20.])
>>> list(scale.center_frequencies)
[20.000000000000004, 43.088693800637671, 92.831776672255558,

200.00000000000003, 430.88693800637651, 928.31776672255558,
2000.0000000000005, 4308.8693800637648, 9283.1776672255564,
20000.000000000004]

class zounds.spectral.ExplicitScale(bands)
A scale where the frequency bands are provided explicitly, rather than computed

Parameters bands (list of FrequencyBand) – The explicit bands used by this scale

See also:

FrequencyAdaptive

class zounds.spectral.FrequencyScale(frequency_band, n_bands, always_even=False)
Represents a set of frequency bands with monotonically increasing start frequencies

Parameters

• frequency_band (FrequencyBand) – A band representing the entire span of this
scale. E.g., one might want to generate a scale spanning the entire range of human hearing
by starting with FrequencyBand(20, 20000)

• n_bands (int) – The number of bands in this scale

• always_even (bool) – when converting frequency slices to integer indices that numpy
can understand, should the slice size always be even?

See also:

LinearScale GeometricScale

bands
An iterable of all bands in this scale

center_frequencies
An iterable of the center frequencies of each band in this scale

bandwidths
An iterable of the bandwidths of each band in this scale

ensure_overlap_ratio(required_ratio=0.5)
Ensure that every adjacent pair of frequency bands meets the overlap ratio criteria. This can be helpful in
scenarios where a scale is being used in an invertible transform, and something like the constant overlap
add constraint must be met in order to not introduce artifacts in the reconstruction.

Parameters required_ratio (float) – The required overlap ratio between all adjacent
frequency band pairs

20 Chapter 1. API documentation

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://ccrma.stanford.edu/~jos/sasp/Constant_Overlap_Add_COLA_Cases.html
https://ccrma.stanford.edu/~jos/sasp/Constant_Overlap_Add_COLA_Cases.html
https://docs.python.org/3/library/functions.html#float

zounds Documentation, Release 0.46.0

Raises AssertionError – when the overlap ratio for one or more adjacent frequency band
pairs is not met

Q
The quality factor of the scale, or, the ratio of center frequencies to bandwidths

start_hz
The lower bound of this frequency scale

stop_hz
The upper bound of this frequency scale

get_slice(frequency_band)
Given a frequency band, and a frequency dimension comprised of n_samples, return a slice using integer
indices that may be used to extract only the frequency samples that intersect with the frequency band

class zounds.spectral.FrequencyBand(start_hz, stop_hz)
Represents an interval, or band of frequencies in hertz (cycles per second)

Parameters

• start_hz (float) – The lower bound of the frequency band in hertz

• stop_hz (float) – The upper bound of the frequency band in hertz

Examples::

>>> import zounds
>>> band = zounds.FrequencyBand(500, 1000)
>>> band.center_frequency
750.0
>>> band.bandwidth
500

intersect(other)
Return the intersection between this frequency band and another.

Parameters other (FrequencyBand) – the instance to intersect with

Examples::

>>> import zounds
>>> b1 = zounds.FrequencyBand(500, 1000)
>>> b2 = zounds.FrequencyBand(900, 2000)
>>> intersection = b1.intersect(b2)
>>> intersection.start_hz, intersection.stop_hz
(900, 1000)

static from_start(start_hz, bandwidth_hz)
Produce a FrequencyBand instance from a lower bound and bandwidth

Parameters

• start_hz (float) – the lower bound of the desired FrequencyBand

• bandwidth_hz (float) – the bandwidth of the desired FrequencyBand

bandwidth
The span of this frequency band, in hertz

1.3. Spectral 21

https://docs.python.org/3/library/exceptions.html#AssertionError
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/functions.html#float

zounds Documentation, Release 0.46.0

1.3.6 Frequency Weightings

class zounds.spectral.AWeighting
An A-weighting (https://en.wikipedia.org/wiki/A-weighting) that can be applied to a frequency axis via multi-
plication.

Examples

>>> from zounds import ArrayWithUnits, GeometricScale
>>> from zounds import FrequencyDimension, AWeighting
>>> import numpy as np
>>> scale = GeometricScale(20, 20000, 0.05, 10)
>>> raw = np.ones(len(scale))
>>> arr = ArrayWithUnits(raw, [FrequencyDimension(scale)])
>>> arr * AWeighting()
ArrayWithUnits([1. , 18.3172567 , 31.19918106, 40.54760374,

47.15389876, 51.1554151 , 52.59655479, 52.24516649,
49.39906912, 42.05409205])

1.4 Core

The core module introduces the key building blocks of the representations zounds deals in: ArrayWithUnits, a
numpy.ndarray-derived class that supports semantically meaningful indexing, and Dimension, a common base
class for custom, user-defined dimensions.

1.4.1 Numpy Arrays with Semantically Meaningful Indexing

class zounds.core.ArrayWithUnits
ArrayWithUnits is an numpy.ndarray subclass that allows for indexing by more semantically meaningful
slices.

It supports most methods on numpy.ndarray, and makes a best-effort to maintain meaningful dimensions
throughout those operations.

Parameters

• arr (ndarray) – The numpy.ndarray instance containing the raw data for this in-
stance

• dimensions (list or tuple) – list or tuple of Dimension-derived classes

Raises ValueError – when arr.ndim and len(dimensions) do not match

Examples

>>> from zounds import ArrayWithUnits, TimeDimension, Seconds, TimeSlice
>>> import numpy as np
>>> data = np.zeros(100)
>>> awu = ArrayWithUnits(data, [TimeDimension(Seconds(1))])
>>> sliced = awu[TimeSlice(Seconds(10))]
>>> sliced.shape
(10,)

22 Chapter 1. API documentation

https://en.wikipedia.org/wiki/A-weighting
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.scipy.org/doc/numpy/reference/generated/numpy.ndarray.html#numpy.ndarray
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/exceptions.html#ValueError

zounds Documentation, Release 0.46.0

See also:

IdentityDimension TimeDimension FrequencyDimension

classmethod from_example(data, example)
Produce a new ArrayWithUnits instance given some raw data and an example instance that has the
desired dimensions

1.4.2 Custom Dimensions

class zounds.core.Dimension
Common base class representing one dimension of a numpy array. Sub-classes can define behavior making
custom slices (e.g., time spans or frequency bands) possible.

Implementors are primarily responsible for determining how custom slices are transformed into integer indexes
and slices that numpy can use directly.

See also:

IdentityDimension TimeDimension FrequencyDimension

metaslice(index, size)
Produce a new instance of this dimension, given a custom slice

integer_based_slice(index)
Subclasses define behavior that transforms a custom, user-defined slice into integer indices that numpy can
understand

Parameters index (custom slice) – A user-defined slice instance

validate(size)
Subclasses check to ensure that the dimensions size does not validate any assumptions made by this in-
stance

class zounds.core.IdentityDimension
A custom dimension that does not transform indices in any way, simply acting as a pass-through.

Examples

>>> from zounds import ArrayWithUnits, IdentityDimension
>>> import numpy as np
>>> data = np.zeros(100)
>>> arr = ArrayWithUnits(data, [IdentityDimension()])
>>> sliced = arr[4:6]
>>> sliced.shape
(2,)

integer_based_slice(index)
Subclasses define behavior that transforms a custom, user-defined slice into integer indices that numpy can
understand

Parameters index (custom slice) – A user-defined slice instance

1.5 Synthesize

The synthesize module includes classes that can produce audio. Some, like SineSynthesize can produce simple
signals from scratch that are often useful for test-cases, while others are able to invert common frequency-domain

1.5. Synthesize 23

zounds Documentation, Release 0.46.0

transforms, like the MDCTSynthesizer

1.5.1 Short-Time Transform Synthesizers

class zounds.synthesize.FFTSynthesizer
Inverts the short-time fourier transform, e.g. the output of the FFT processing node.

Here’s an example that extracts a short-time fourier transform, and then inverts it.

import zounds

STFT = zounds.stft(
resample_to=zounds.SR11025(),
store_fft=True)

@zounds.simple_in_memory_settings
class Sound(STFT):

pass

produce some additive sine waves
sine_synth = zounds.SineSynthesizer(zounds.SR22050())
samples = sine_synth.synthesize(

zounds.Seconds(4), freqs_in_hz=[220, 400, 880])

process the sound, including a short-time fourier transform feature
_id = Sound.process(meta=samples.encode())
snd = Sound(_id)

invert the frequency-domain feature to reover the original audio
fft_synth = zounds.FFTSynthesizer()
recon = fft_synth.synthesize(snd.fft)
print recon.__class__ # AudioSamples instance with reconstructed audio

See also:

FFT

class zounds.synthesize.DCTSynthesizer(windowing_func=<zounds.spectral.sliding_window.IdentityWindowingFunc
object>)

Inverts the short-time discrete cosine transform (type II), e.g., the output of the DCT processing node

Here’s an example that extracts a short-time discrete cosine transform, and then inverts it.

import zounds

Resampled = zounds.resampled(resample_to=zounds.SR11025())

@zounds.simple_in_memory_settings
class Sound(Resampled):

windowed = zounds.ArrayWithUnitsFeature(
zounds.SlidingWindow,
needs=Resampled.resampled,
wscheme=zounds.HalfLapped(),
wfunc=zounds.OggVorbisWindowingFunc(),
store=False)

(continues on next page)

24 Chapter 1. API documentation

zounds Documentation, Release 0.46.0

(continued from previous page)

dct = zounds.ArrayWithUnitsFeature(
zounds.DCT,
needs=windowed,
store=True)

produce some additive sine waves
sine_synth = zounds.SineSynthesizer(zounds.SR22050())
samples = sine_synth.synthesize(

zounds.Seconds(4), freqs_in_hz=[220, 400, 880])

process the sound, including a short-time fourier transform feature
_id = Sound.process(meta=samples.encode())
snd = Sound(_id)

invert the frequency-domain feature to reover the original audio
dct_synth = zounds.DCTSynthesizer()
recon = dct_synth.synthesize(snd.dct)
print recon.__class__ # AudioSamples instance with reconstructed audio

See also:

DCT

class zounds.synthesize.DCTIVSynthesizer(windowing_func=<zounds.spectral.sliding_window.IdentityWindowingFunc
object>)

Inverts the short-time discrete cosine transform (type IV), e.g., the output of the DCTIV processing node.

Here’s an example that extracts a short-time DCT-IV transform, and inverts it.

import zounds

Resampled = zounds.resampled(resample_to=zounds.SR11025())

@zounds.simple_in_memory_settings
class Sound(Resampled):

windowed = zounds.ArrayWithUnitsFeature(
zounds.SlidingWindow,
needs=Resampled.resampled,
wscheme=zounds.HalfLapped(),
wfunc=zounds.OggVorbisWindowingFunc(),
store=False)

dct = zounds.ArrayWithUnitsFeature(
zounds.DCTIV,
needs=windowed,
store=True)

produce some additive sine waves
sine_synth = zounds.SineSynthesizer(zounds.SR22050())
samples = sine_synth.synthesize(

zounds.Seconds(4), freqs_in_hz=[220, 400, 880])

process the sound, including a short-time fourier transform feature
_id = Sound.process(meta=samples.encode())
snd = Sound(_id)

invert the frequency-domain feature to reover the original audio
(continues on next page)

1.5. Synthesize 25

zounds Documentation, Release 0.46.0

(continued from previous page)

dct_synth = zounds.DCTIVSynthesizer()
recon = dct_synth.synthesize(snd.dct)
print recon.__class__ # AudioSamples instance with reconstructed audio

See also:

DCTIV

class zounds.synthesize.MDCTSynthesizer
Inverts the modified discrete cosine transform, e.g., the output of the MDCT processing node.

Here’s an example that extracts a short-time MDCT transform, and inverts it.

import zounds

Resampled = zounds.resampled(resample_to=zounds.SR11025())

@zounds.simple_in_memory_settings
class Sound(Resampled):

windowed = zounds.ArrayWithUnitsFeature(
zounds.SlidingWindow,
needs=Resampled.resampled,
wscheme=zounds.HalfLapped(),
wfunc=zounds.OggVorbisWindowingFunc(),
store=False)

mdct = zounds.ArrayWithUnitsFeature(
zounds.MDCT,
needs=windowed,
store=True)

produce some additive sine waves
sine_synth = zounds.SineSynthesizer(zounds.SR22050())
samples = sine_synth.synthesize(

zounds.Seconds(4), freqs_in_hz=[220, 400, 880])

process the sound, including a short-time fourier transform feature
_id = Sound.process(meta=samples.encode())
snd = Sound(_id)

invert the frequency-domain feature to reover the original audio
mdct_synth = zounds.MDCTSynthesizer()
recon = mdct_synth.synthesize(snd.mdct)
print recon.__class__ # AudioSamples instance with reconstructed audio

See also:

MDCT

1.5.2 Frequency-Adaptive Transform Synthesizers

class zounds.synthesize.FrequencyAdaptiveDCTSynthesizer(scale, samplerate)
Invert a frequency-adaptive transform, e.g., one produced by the zounds.spectral.
FrequencyAdaptiveTransform processing node which has used a discrete cosine transform in its
transform parameter.

26 Chapter 1. API documentation

zounds Documentation, Release 0.46.0

Parameters

• scale (FrequencyScale) – The scale used to produce the frequency-adaptive trans-
form

• samplerate (SampleRate) – The audio samplerate of the audio that was originally
transformed

Here’s an example of how you might first extract a frequency-adaptive representation, and then invert it:

import zounds
import scipy
import numpy as np

samplerate = zounds.SR11025()
Resampled = zounds.resampled(resample_to=samplerate)

scale = zounds.GeometricScale(
100, 5000, bandwidth_ratio=0.089, n_bands=100)

scale.ensure_overlap_ratio(0.5)

@zounds.simple_in_memory_settings
class Sound(Resampled):

long_windowed = zounds.ArrayWithUnitsFeature(
zounds.SlidingWindow,
wscheme=zounds.SampleRate(

frequency=zounds.Milliseconds(500),
duration=zounds.Seconds(1)),

wfunc=zounds.OggVorbisWindowingFunc(),
needs=Resampled.resampled)

dct = zounds.ArrayWithUnitsFeature(
zounds.DCT,
scale_always_even=True,
needs=long_windowed)

freq_adaptive = zounds.FrequencyAdaptiveFeature(
zounds.FrequencyAdaptiveTransform,
transform=scipy.fftpack.idct,
window_func=np.hanning,
scale=scale,
needs=dct,
store=True)

produce some additive sine waves
sine_synth = zounds.SineSynthesizer(zounds.SR22050())
samples = sine_synth.synthesize(

zounds.Seconds(10), freqs_in_hz=[220, 440, 880])

process the sound, including a short-time fourier transform feature
_id = Sound.process(meta=samples.encode())
snd = Sound(_id)

invert the sound
synth = zounds.FrequencyAdaptiveDCTSynthesizer(scale, samplerate)
recon = synth.synthesize(snd.freq_adaptive)
print recon # AudioSamples instance with the reconstructed sound

1.5. Synthesize 27

zounds Documentation, Release 0.46.0

See also:

DCT FrequencyAdaptive FrequencyAdaptiveTransform

class zounds.synthesize.FrequencyAdaptiveFFTSynthesizer(scale, samplerate)
Invert a frequency-adaptive transform, e.g., one produced by the zounds.spectral.
FrequencyAdaptiveTransform processing node which has used a fast fouriter transform in its
transform parameter.

Parameters

• scale (FrequencyScale) – The scale used to produce the frequency-adaptive trans-
form

• samplerate (SampleRate) – The audio samplerate of the audio that was originally
transformed

Here’s an example of how you might first extract a frequency-adaptive representation, and then invert it:

import zounds
import numpy as np

samplerate = zounds.SR11025()
Resampled = zounds.resampled(resample_to=samplerate)

scale = zounds.GeometricScale(100, 5000, bandwidth_ratio=0.089, n_bands=100)
scale.ensure_overlap_ratio(0.5)

@zounds.simple_in_memory_settings
class Sound(Resampled):

long_windowed = zounds.ArrayWithUnitsFeature(
zounds.SlidingWindow,
wscheme=zounds.SampleRate(

frequency=zounds.Milliseconds(500),
duration=zounds.Seconds(1)),

wfunc=zounds.OggVorbisWindowingFunc(),
needs=Resampled.resampled)

fft = zounds.ArrayWithUnitsFeature(
zounds.FFT,
needs=long_windowed)

freq_adaptive = zounds.FrequencyAdaptiveFeature(
zounds.FrequencyAdaptiveTransform,
transform=np.fft.irfft,
window_func=np.hanning,
scale=scale,
needs=fft,
store=True)

produce some additive sine waves
sine_synth = zounds.SineSynthesizer(zounds.SR22050())
samples = sine_synth.synthesize(

zounds.Seconds(10), freqs_in_hz=[220, 440, 880])

process the sound, including a short-time fourier transform feature
_id = Sound.process(meta=samples.encode())
snd = Sound(_id)

(continues on next page)

28 Chapter 1. API documentation

zounds Documentation, Release 0.46.0

(continued from previous page)

invert the sound
synth = zounds.FrequencyAdaptiveFFTSynthesizer(scale, samplerate)
recon = synth.synthesize(snd.freq_adaptive)
print recon # AudioSamples instance with the reconstructed sound

See also:

FFT FrequencyAdaptive FrequencyAdaptiveTransform

1.5.3 Simple Signals

class zounds.synthesize.SineSynthesizer(samplerate)
Synthesize sine waves

Parameters samplerate (Samplerate) – the samplerate at which the sine waves should be
synthesized

Examples

>>> import zounds
>>> synth = zounds.SineSynthesizer(zounds.SR22050())
>>> samples = synth.synthesize(zounds.Seconds(1), freqs_in_hz=[220.,
→˓440.])
>>> samples
AudioSamples([0. , 0.09384942, 0.18659419, ..., -0.27714552,

-0.18659419, -0.09384942])
>>> len(samples)
22050

See also:

TickSynthesizer NoiseSynthesizer SilenceSynthesizer

synthesize(duration, freqs_in_hz=[440.0])
Synthesize one or more sine waves

Parameters

• duration (numpy.timdelta64) – The duration of the sound to be synthesized

• freqs_in_hz (list of float) – Numbers representing the frequencies in hz that
should be synthesized

class zounds.synthesize.NoiseSynthesizer(samplerate)
Synthesize white noise

Parameters samplerate (SampleRate) – the samplerate at which the ticks should be synthe-
sized

Examples

>>> import zounds
>>> synth = zounds.NoiseSynthesizer(zounds.SR44100())
>>> samples = synth.synthesize(zounds.Seconds(2))

(continues on next page)

1.5. Synthesize 29

zounds Documentation, Release 0.46.0

(continued from previous page)

>>> samples
AudioSamples([0.1137964 , -0.02613194, 0.30963904, ..., -0.71398137,

-0.99840281, 0.74310827])

See also:

SineSynthesizer TickSynthesizer SilenceSynthesizer

synthesize(duration)
Synthesize white noise

Parameters duration (numpy.timedelta64) – The duration of the synthesized sound

class zounds.synthesize.TickSynthesizer(samplerate)
Synthesize short, percussive, periodic “ticks”

Parameters samplerate (SampleRate) – the samplerate at which the ticks should be synthe-
sized

Examples

>>> import zounds
>>> synth = zounds.TickSynthesizer(zounds.SR22050())
>>> samples = synth.synthesize(duration=zounds.Seconds(3), tick_
→˓frequency=zounds.Milliseconds(100))
>>> samples
AudioSamples([-3.91624993e-01, -8.96939666e-01, 4.18165378e-01, ...,

-4.08054347e-04, -2.32257899e-04, 0.00000000e+00])

See also:

SineSynthesizer NoiseSynthesizer SilenceSynthesizer

synthesize(duration, tick_frequency)
Synthesize periodic “ticks”, generated from white noise and an envelope

Parameters

• duration (numpy.timedelta64) – The total duration of the sound to be synthesized

• tick_frequency (numpy.timedelta64) – The frequency of the ticking sound

class zounds.synthesize.SilenceSynthesizer(samplerate)
Synthesize silence

Parameters samplerate (SampleRate) – the samplerate at which the ticks should be synthe-
sized

Examples

>>> import zounds
>>> synth = zounds.SilenceSynthesizer(zounds.SR11025())
>>> samples = synth.synthesize(zounds.Seconds(5))
>>> samples
AudioSamples([0., 0., 0., ..., 0., 0., 0.])

synthesize(duration)
Synthesize silence

30 Chapter 1. API documentation

zounds Documentation, Release 0.46.0

Parameters duration (numpy.timedelta64) – The duration of the synthesized sound

1.6 Datasets

The datasets module provides access to some common sources of audio on the internet. In general, a dataset instance
is an iterable of zounds.soundfile.AudioMetaData instances that can be passed to the root node of an audio
processing graph.

class zounds.datasets.FreeSoundSearch(api_key, query, n_results=10, delay=0.2)
Produces an iterable of zounds.soundfile.AudioMetaData instances for every result from a https:
//freesound.org search

Parameters

• api_key (str) – Your freesound.org API key (get one here: (http://freesound.org/apiv2/
apply/))

• query (str) – The text query to perform

Raises ValueError: when api_key and/or query are not supplied

Examples

>>> from zounds import FreeSoundSearch
>>> fss = FreeSoundSearch('YOUR_API_KEY', 'guitar')
>>> iter(fss).next()
{'description': u'Etude of Electric Guitar in Dm. Used chorus and reverberation
→˓effects. Size 6/4. Tempo 100. Gloomy and sentimental.', 'tags': [u'Etude', u
→˓'Experemental', u'Guitar', u'guitar', u'Electric', u'Chorus'], 'uri': <Request
→˓[GET]>, 'channels': 2, 'licensing': u'http://creativecommons.org/licenses/by/3.
→˓0/', 'samplerate': 44100.0}

See also:

InternetArchive PhatDrumLoops zounds.soundfile.AudioMetaData

class zounds.datasets.InternetArchive(archive_id, format_filter=None, **attrs)
Produces an iterable of zounds.soundfile.AudioMetaData instances for every file of a particular for-
mat from an internet archive id.

Parameters

• archive_id (str) – the Internet Archive identifier

• format_filter (str) – The file format to return

• attrs (dict) – Extra attributes to add to the AudioMetaData

Raises ValueError – when archive_id is not provided

Examples

>>> from zounds import InternetArchive
>>> ia = InternetArchive('Greatest_Speeches_of_the_20th_Century')
>>> iter(ia).next()
{'creator': u'John F. Kennedy', 'height': u'0', 'channels': None, 'genre': u'Folk
→˓', 'licensing': None, 'mtime': u'1236666800', 'samplerate': None, 'size': u
→˓'7264435', 'album': u'Great Speeches of the 20th Century [Box Set] Disc 2',
→˓'title': u'The Cuban Missile Crisis', 'format': u'128Kbps MP3', 'source': u
→˓'original', 'description': None, 'tags': None, 'track': u'15', 'crc32': u
→˓'ace17eb5', 'md5': u'e00f4e7bd9df7bdba4db7098d1ccdfe0', 'sha1': u
→˓'e42d1f348078a11ed9a6ea9c8934a1236235c7b3', 'artist': u'John F. Kennedy',
→˓'external-identifier': [u'urn:acoustid:ff850a0c-2efa-450f-8034-efdb31a9b696', u
→˓'urn:mb_recording_id:912cedd0-5530-4f26-972c-13d131fef06e'], 'uri': <Request
→˓[GET]>, 'length': u'454.03', 'width': u'0'}

(continues on next page)

1.6. Datasets 31

https://freesound.org
https://freesound.org
https://docs.python.org/3/library/stdtypes.html#str
http://freesound.org/apiv2/apply/
http://freesound.org/apiv2/apply/
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError

zounds Documentation, Release 0.46.0

(continued from previous page)

See also:

FreeSoundSearch PhatDrumLoops zounds.soundfile.AudioMetaData

class zounds.datasets.PhatDrumLoops(**attrs)
Produces an iterable of zounds.soundfile.AudioMetaData instances for every drum break from http:
//phatdrumloops.com/beats.php

Parameters attrs (dict) – Extra properties to add to the AudioMetaData

Examples

>>> from zounds import PhatDrumLoops
>>> pdl = PhatDrumLoops()
>>> iter(pdl).next()
{'description': None, 'tags': None, 'uri': <Request [GET]>, 'channels': None,
→˓'licensing': None, 'samplerate': None}

See also:

InternetArchive FreeSoundSearch zounds.soundfile.AudioMetaData

class zounds.datasets.CompositeDataset(*datasets)
A dataset composed of two or more others

Parameters datasets (list of datasets) – One or more other datasets

Examples

>>> from zounds import InternetArchive, CompositeDataset, ingest
>>> dataset1 = InternetArchive('beethoven_ingigong_850')
>>> dataset2 = InternetArchive('The_Four_Seasons_Vivaldi-10361')
>>> composite = CompositeDataset(dataset1, dataset2)
>>> ingest(composite, Sound) # ingest data from both datasets

1.7 Learn

The learn module includes classes that make it possible to define processing graphs whose leaves are trained machine
learning models.

While much of zounds.soundfile, zounds.spectral, and zounds.timeseries focus on processing
nodes that can be composed into a processing graph to extract features from a single piece of audio, the learn module
focuses on defining graphs that extract features or trained models from an entire corpus of audio.

1.7.1 PyTorch Modules

class zounds.learn.FilterBank(samplerate, kernel_size, scale, scaling_factors, normal-
ize_filters=True, a_weighting=True)

A torch module that convolves a 1D input signal with a bank of morlet filters.

Parameters

32 Chapter 1. API documentation

http://phatdrumloops.com/beats.php
http://phatdrumloops.com/beats.php
https://docs.python.org/3/library/stdtypes.html#dict

zounds Documentation, Release 0.46.0

• samplerate (SampleRate) – the samplerate of the input signal

• kernel_size (int) – the length in samples of each filter

• scale (FrequencyScale) – a scale whose center frequencies determine the fundamen-
tal frequency of each filer

• scaling_factors (int or list of int) – Scaling factors for each band, which
determine the time-frequency resolution tradeoff. The number(s) should fall between 0 and
1, with smaller numbers achieving better frequency resolution, and larget numbers better
time resolution

• normalize_filters (bool) – When true, ensure that each filter in the bank has unit
norm

• a_weighting (bool) – When true, apply a perceptually-motivated weighting of the fil-
ters

See also:

AWeighting morlet_filter_bank()

class zounds.learn.SincLayer(scale, taps, samplerate)
A layer as described in the paper “Speaker Recognition from raw waveform with SincNet”

This paper proposes a novel CNN architecture, called SincNet, that encourages the first convolutional
layer to discover more meaningful filters. SincNet is based on parametrized sinc functions, which
implement band-pass filters. In contrast to standard CNNs, that learn all elements of each filter, only
low and high cutoff frequencies are directly learned from data with the proposed method. This offers
a very compact and efficient way to derive a customized filter bank specifically tuned for the desired
application. Our experiments, conducted on both speaker identification and speaker verification tasks,
show that the proposed architecture converges faster and performs better than a standard CNN on raw
waveforms.

—https://arxiv.org/abs/1808.00158

Parameters

• scale (FrequencyScale) – A scale defining the initial bandpass filters

• taps (int) – The length of the filter in samples

• samplerate (SampleRate) – The sampling rate of incoming samples

See also:

FrequencyScale SampleRate

1.7.2 The Basics

class zounds.learn.PreprocessingPipeline(needs=None)
A PreprocessingPipeline is a node in the graph that can be connected to one or more Preprocessor nodes,
whose output it will assemble into a re-usable pipeline.

Parameters needs (list or tuple of Node) – the Preprocessor nodes on whose out-
put this pipeline depends

Here’s an example of a learning pipeline that will first find the feature-wise mean and standard deviation of
a dataset, and will then learn K-Means clusters from the dataset. This will result in a re-usable pipeline that
can use statistics from the original dataset to normalize new examples, assign them to a cluster, and finally,
reconstruct them.

1.7. Learn 33

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/abs/1808.00158
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#list

zounds Documentation, Release 0.46.0

import featureflow as ff
import zounds
from random import choice

samplerate = zounds.SR44100()
STFT = zounds.stft(resample_to=samplerate)

@zounds.simple_in_memory_settings
class Sound(STFT):

bark = zounds.ArrayWithUnitsFeature(
zounds.BarkBands,
samplerate=samplerate,
needs=STFT.fft,
store=True)

@zounds.simple_in_memory_settings
class ExamplePipeline(ff.BaseModel):

docs = ff.PickleFeature(
ff.IteratorNode,
needs=None)

shuffled = ff.PickleFeature(
zounds.ShuffledSamples,
nsamples=100,
needs=docs,
store=False)

meanstd = ff.PickleFeature(
zounds.MeanStdNormalization,
needs=docs,
store=False)

kmeans = ff.PickleFeature(
zounds.KMeans,
needs=meanstd,
centroids=32)

pipeline = ff.PickleFeature(
zounds.PreprocessingPipeline,
needs=(meanstd, kmeans),
store=True)

apply the Sound processing graph to individual audio files
for metadata in zounds.InternetArchive('TheR.H.SFXLibrary'):

print 'processing {url}'.format(url=metadata.request.url)
Sound.process(meta=metadata)

apply the ExamplePipeline processing graph to the entire corpus of audio
_id = ExamplePipeline.process(docs=(snd.bark for snd in Sound))
learned = ExamplePipeline(_id)

snd = choice(list(Sound))
result = learned.pipeline.transform(snd.bark)
print result.data # print the assigned centroids for each FFT frame
inverted = result.inverse_transform()
print inverted # the reconstructed FFT frames

34 Chapter 1. API documentation

zounds Documentation, Release 0.46.0

See also:

Pipeline Preprocessor PreprocessResult PipelineResult

class zounds.learn.Pipeline(preprocess_results)

class zounds.learn.Preprocessor(needs=None)
Preprocessor is the common base class for nodes in a processing graph that will produce
PreprocessingResult instances that end up as part of a Pipeline.

Parameters needs (Node) – previous processing node(s) on which this one depends for its data

See also:

PreprocessResult PreprocessingPipeline PipelineResult

class zounds.learn.PreprocessResult(data, op, inversion_data=None, inverse=None,
name=None)

PreprocessResult are the output of Preprocessor nodes, and can participate in a Pipeline.

Parameters

• data – the data on which the node in the graph was originally trained

• op (Op) – a callable that can transform data

• inversion_data – data extracted in the forward pass of the model, that can be used to
invert the result

• inverse (Op) – a callable that given the output of op, and inversion_data, can invert the
result

class zounds.learn.PipelineResult(data, processors, inversion_data, wrap_data)

1.7.3 Custom Losses

class zounds.learn.PerceptualLoss(scale, samplerate, frequency_window=<ZoundsDocsMock
name=’mock()’ id=’140484303083112’>, basis_size=512,
lap=2, log_factor=100, frequency_weighting=None, co-
sine_similarity=True)

PerceptualLoss computes loss/distance in a feature space that roughly approximates early stages of the hu-
man audio processing pipeline, instead of computing raw sample loss. It decomposes a 1D (audio) signal into
frequency bands using an FIR filter bank whose frequencies are centered according to a user-defined scale, per-
forms half-wave rectification, puts amplitudes on a log scale, and finally optionally applies a re-weighting of
frequency bands.

Parameters

• scale (FrequencyScale) – a scale defining frequencies at which the FIR filters will be
centered

• samplerate (SampleRate) – samplerate needed to construct the FIR filter bank

• frequency_window (ndarray) – window determining how narrow or wide filter re-
sponses should be

• basis_size (int) – The kernel size, or number of “taps” for each filter

• lap (int) – The filter stride

• log_factor (int) – How much compression should be applied in the log amplitude
stage

1.7. Learn 35

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

zounds Documentation, Release 0.46.0

• frequency_weighting (FrequencyWeighting) – an optional frequency weight-
ing to be applied after log amplitude scaling

• cosine_similarity (bool) – If True, compute the cosine similarity between spectro-
grams, otherwise, compute the mean squared error

1.7.4 Data Preparation

class zounds.learn.UnitNorm(needs=None)

class zounds.learn.MuLawCompressed(needs=None)

class zounds.learn.MeanStdNormalization(needs=None)

class zounds.learn.InstanceScaling(max_value=1, needs=None)

class zounds.learn.Weighted(weighting, needs=None)

1.7.5 Sampling

class zounds.learn.ShuffledSamples(nsamples=None, multiplexed=False, dtype=None,
needs=None)

1.7.6 Machine Learning Models

class zounds.learn.KMeans(centroids=None, needs=None)

class zounds.learn.SklearnModel(model=None, needs=None)

class zounds.learn.PyTorchNetwork(trainer=None, post_training_func=None, needs=None,
training_set_prep=None, chunksize=None)

class zounds.learn.PyTorchGan(apply_network=’generator’, trainer=None, needs=None)

class zounds.learn.PyTorchAutoEncoder(trainer=None, needs=None)

class zounds.learn.SupervisedTrainer(model, loss, optimizer, epochs, batch_size, hold-
out_percent=0.0, data_preprocessor=<function
SupervisedTrainer.<lambda>>, la-
bel_preprocessor=<function Supervised-
Trainer.<lambda>>, checkpoint_epochs=1)

class zounds.learn.TripletEmbeddingTrainer(network, epochs, batch_size, anchor_slice, de-
formations=None, checkpoint_epochs=1)

Learn an embedding by applying the triplet loss to anchor examples, negative examples, and deformed or adja-
cent examples, akin to:

• UNSUPERVISED LEARNING OF SEMANTIC AUDIO REPRESENTATIONS <https://arxiv.org/pdf/1711.
02209.pdf>

Parameters

• network (nn.Module) – the neural network to train

• epochs (int) – the desired number of passes over the entire dataset

• batch_size (int) – the number of examples in each minibatch

36 Chapter 1. API documentation

https://docs.python.org/3/library/functions.html#bool
https://arxiv.org/pdf/1711.02209.pdf
https://arxiv.org/pdf/1711.02209.pdf
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int

zounds Documentation, Release 0.46.0

• anchor_slice (slice) – since choosing examples near the anchor example is one pos-
sible transformation that can be applied to find a positive example, batches generally consist
of examples that are longer (temporally) than the examples that will be fed to the network,
so that adjacent examples may be chosen. This slice indicates which part of the minibatch
examples comprises the anchor

• deformations (callable) – a collection of other deformations or transformations that
can be applied to anchor examples to derive positive examples. These callables should take
two arguments: the anchor examples from the minibatch, as well as the “wider” minibatch
examples that include temporally adjacent events

class zounds.learn.WassersteinGanTrainer(network, latent_dimension, n_critic_iterations,
epochs, batch_size, preprocess_minibatch=None,
kwargs_factory=None, debug_gradient=False,
checkpoint_epochs=1)

Parameters

• network (nn.Module) – the network to train

• latent_dimension (tuple) – A tuple that defines the shape of the latent dimension
(noise) that is the generator’s input

• n_critic_iterations (int) – The number of minibatches the critic sees for every
minibatch the generator sees

• epochs – The total number of passes over the training set

• batch_size – The size of a minibatch

• preprocess_minibatch (function) – function that takes the current epoch, and a
minibatch, and mutates the minibatch

• kwargs_factory (callable) – function that takes the current epoch and outputs args
to pass to the generator and discriminator

1.7.7 Hashing

class zounds.learn.SimHash(bits=None, packbits=False, needs=None)
Hash feature vectors by computing on which side of N hyperplanes those features lie.

Parameters

• bits (int) – The number of hyperplanes, and hence, the number of bits in the resulting
hash

• packbits (bool) – Should the result be bit-packed?

• needs (Preprocessor) – the processing node on which this node relies for its data

1.7.8 Learned Models in Audio Processing Graphs

class zounds.learn.Learned(learned=None, version=None, wrapper=None, pipeline_func=None,
needs=None, dtype=None)

1.7. Learn 37

https://docs.python.org/3/library/functions.html#slice
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool

zounds Documentation, Release 0.46.0

38 Chapter 1. API documentation

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

39

zounds Documentation, Release 0.46.0

40 Chapter 2. Indices and tables

Python Module Index

z
zounds.core, 22
zounds.datasets, 31
zounds.learn, 32
zounds.soundfile, 9
zounds.spectral, 13
zounds.synthesize, 23
zounds.timeseries, 3

41

zounds Documentation, Release 0.46.0

42 Python Module Index

Index

A
ArrayWithUnits (class in zounds.core), 22
AudioMetaData (class in zounds.soundfile), 9
AudioSamples (class in zounds.timeseries), 3
AudioStream (class in zounds.soundfile), 10
AWeighting (class in zounds.spectral), 22

B
bands (zounds.spectral.FrequencyScale attribute), 20
bandwidth (zounds.spectral.FrequencyBand attribute),

21
bandwidths (zounds.spectral.FrequencyScale at-

tribute), 20
BarkBands (class in zounds.spectral), 17
BFCC (class in zounds.spectral), 18

C
center_frequencies

(zounds.spectral.FrequencyScale attribute), 20
Chroma (class in zounds.spectral), 17
ChunkSizeBytes (class in zounds.soundfile), 10
CompositeDataset (class in zounds.datasets), 32

D
DCT (class in zounds.spectral), 16
DCTIV (class in zounds.spectral), 17
DCTIVSynthesizer (class in zounds.synthesize), 25
DCTSynthesizer (class in zounds.synthesize), 24
Dimension (class in zounds.core), 23

E
encode() (zounds.timeseries.AudioSamples method), 4
ensure_overlap_ratio()

(zounds.spectral.FrequencyScale method),
20

ExplicitFrequencyDimension (class in
zounds.spectral), 14

ExplicitScale (class in zounds.spectral), 20

F
FFT (class in zounds.spectral), 16
fft() (in module zounds.spectral), 15
FFTSynthesizer (class in zounds.synthesize), 24
FilterBank (class in zounds.learn), 32
FreeSoundSearch (class in zounds.datasets), 31
FrequencyAdaptive (class in zounds.spectral), 14
FrequencyAdaptiveDCTSynthesizer (class in

zounds.synthesize), 26
FrequencyAdaptiveFFTSynthesizer (class in

zounds.synthesize), 28
FrequencyAdaptiveTransform (class in

zounds.spectral), 17
FrequencyBand (class in zounds.spectral), 21
FrequencyDimension (class in zounds.spectral), 13
FrequencyScale (class in zounds.spectral), 20
FrequencyWeighting (class in zounds.spectral), 16
from_example() (zounds.core.ArrayWithUnits class

method), 23
from_example() (zounds.timeseries.AudioSamples

class method), 4
from_sample_rate() (zounds.spectral.LinearScale

static method), 19
from_start() (zounds.spectral.FrequencyBand static

method), 21

G
GeometricScale (class in zounds.spectral), 19
get_slice() (zounds.spectral.FrequencyScale

method), 21

H
HanningWindowingFunc (class in zounds.spectral),

18
Hours (class in zounds.timeseries), 7

I
IdentityDimension (class in zounds.core), 23

43

zounds Documentation, Release 0.46.0

IdentityWindowingFunc (class in
zounds.spectral), 18

InstanceScaling (class in zounds.learn), 36
integer_based_slice() (zounds.core.Dimension

method), 23
integer_based_slice()

(zounds.core.IdentityDimension method),
23

integer_based_slice()
(zounds.spectral.ExplicitFrequencyDimension
method), 14

integer_based_slice()
(zounds.spectral.FrequencyDimension
method), 13

integer_based_slice()
(zounds.timeseries.TimeDimension method), 5

InternetArchive (class in zounds.datasets), 31
intersect() (zounds.spectral.FrequencyBand

method), 21

K
KMeans (class in zounds.learn), 36

L
Learned (class in zounds.learn), 37
LinearScale (class in zounds.spectral), 19

M
MDCT (class in zounds.spectral), 17
MDCTSynthesizer (class in zounds.synthesize), 26
MeanStdNormalization (class in zounds.learn), 36
metaslice() (zounds.core.Dimension method), 23
metaslice() (zounds.spectral.ExplicitFrequencyDimension

method), 14
metaslice() (zounds.spectral.FrequencyDimension

method), 13
metaslice() (zounds.timeseries.TimeDimension

method), 5
Microseconds (class in zounds.timeseries), 8
Milliseconds (class in zounds.timeseries), 8
Minutes (class in zounds.timeseries), 8
mono (zounds.timeseries.AudioSamples attribute), 4
morlet_filter_bank() (in module

zounds.spectral), 15
MuLawCompressed (class in zounds.learn), 36

N
Nanoseconds (class in zounds.timeseries), 9
NoiseSynthesizer (class in zounds.synthesize), 29

O
OggVorbis (class in zounds.soundfile), 12
OggVorbisWindowingFunc (class in

zounds.spectral), 18

overlap (zounds.timeseries.SampleRate attribute), 7
overlap_ratio (zounds.timeseries.SampleRate at-

tribute), 7

P
PerceptualLoss (class in zounds.learn), 35
PhatDrumLoops (class in zounds.datasets), 32
Picoseconds (class in zounds.timeseries), 9
Pipeline (class in zounds.learn), 35
PipelineResult (class in zounds.learn), 35
PreprocessingPipeline (class in zounds.learn),

33
Preprocessor (class in zounds.learn), 35
PreprocessResult (class in zounds.learn), 35
PyTorchAutoEncoder (class in zounds.learn), 36
PyTorchGan (class in zounds.learn), 36
PyTorchNetwork (class in zounds.learn), 36

Q
Q (zounds.spectral.FrequencyScale attribute), 21

R
Resampler (class in zounds.soundfile), 11

S
SampleRate (class in zounds.timeseries), 7
Seconds (class in zounds.timeseries), 8
ShuffledSamples (class in zounds.learn), 36
SilenceSynthesizer (class in zounds.synthesize),

30
SimHash (class in zounds.learn), 37
SincLayer (class in zounds.learn), 33
SineSynthesizer (class in zounds.synthesize), 29
SklearnModel (class in zounds.learn), 36
SlidingWindow (class in zounds.spectral), 15
SpectralCentroid (class in zounds.spectral), 17
SpectralFlatness (class in zounds.spectral), 18
square() (zounds.spectral.FrequencyAdaptive

method), 14
SR11025 (class in zounds.timeseries), 6
SR22050 (class in zounds.timeseries), 6
SR44100 (class in zounds.timeseries), 6
SR48000 (class in zounds.timeseries), 6
SR96000 (class in zounds.timeseries), 5
start_hz (zounds.spectral.FrequencyScale attribute),

21
stop_hz (zounds.spectral.FrequencyScale attribute), 21
SupervisedTrainer (class in zounds.learn), 36
synthesize() (zounds.synthesize.NoiseSynthesizer

method), 30
synthesize() (zounds.synthesize.SilenceSynthesizer

method), 30
synthesize() (zounds.synthesize.SineSynthesizer

method), 29

44 Index

zounds Documentation, Release 0.46.0

synthesize() (zounds.synthesize.TickSynthesizer
method), 30

T
TickSynthesizer (class in zounds.synthesize), 30
TimeDimension (class in zounds.timeseries), 4
TimeSlice (class in zounds.timeseries), 5
TripletEmbeddingTrainer (class in

zounds.learn), 36

U
UnitNorm (class in zounds.learn), 36

V
validate() (zounds.core.Dimension method), 23
validate() (zounds.spectral.ExplicitFrequencyDimension

method), 14
validate() (zounds.spectral.FrequencyDimension

method), 14

W
WassersteinGanTrainer (class in zounds.learn),

37
Weighted (class in zounds.learn), 36
WindowingFunc (class in zounds.spectral), 18

Z
zounds.core (module), 22
zounds.datasets (module), 31
zounds.learn (module), 32
zounds.soundfile (module), 9
zounds.spectral (module), 13
zounds.synthesize (module), 23
zounds.timeseries (module), 3

Index 45

	API documentation
	Timeseries
	Soundfile
	Spectral
	Core
	Synthesize
	Datasets
	Learn

	Indices and tables
	Python Module Index
	Index

